Managing Soils of the Tropics to Meet Societal Demands of the 21st Century

R. Lal - Carbon Management and Sequestration Center, OSU, Columbus, OH, USA & E. Amezquita - CIAT, Cali, Colombia Columbian Society of Soil Sciences Congress 4 - 6 October 2006 Hotel Tequendama, Bogota, Colombia

HOLDRIDGE LIFE ZONES

TROPICAL RAINFOREST (NOT SHOWN) TROPICAL MOIST AND WET FOREST TROPICAL VERY DRY TO DRY FOREST TROPICAL DESERT, SCRUB AND WOODLAND SUBTROPICAL DRY/MOIST/WET/RAIN FOREST SUBTROPICAL DESERT, SCRUB, AND WOODLAND WARM TEMPERATE DESERT, SCRUB AND STEPPE WARM TEMPERATE DRY/MOIST/WET/RAINFOREST COOL TEMPERATE DESERT, SCRUB AND STEPPE COOL TEMPERATE DESERT, SCRUB AND STEPPE BOREAL MOIST/WET/RAINFOREST BOREAL MOIST/WET/RAINFOREST BOREAL DESERT AND DRY SCRUB SUBPOLAR DRY TO RAIN TUNDRA POLAR DESERT

UNEP/GRID

Tropics

The land between 23°N and S of the equator:

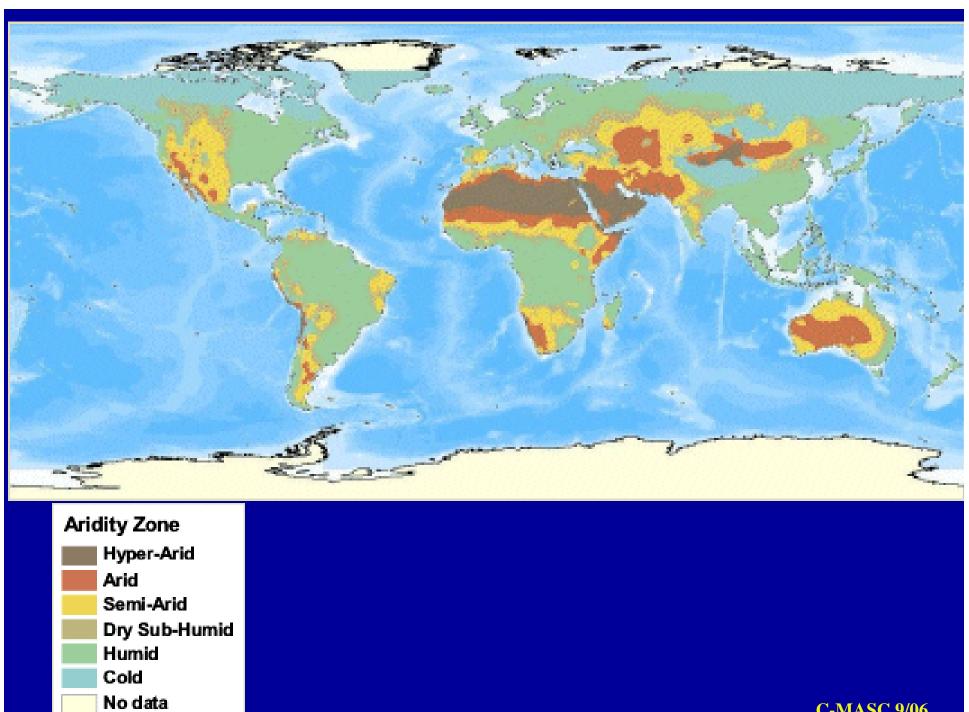
- 40% of the earth's surface
- 5 billion hectares (Bha)
- 50% of the world's rainfall
- 53% of 3 Bha of the world's potentially arable land area

Tropical Agroecosystems

Agroeco regions	LGP (day s)	DMT (C°)
Warm humid the nice	075 265	> 20
War m humid tropics War m seasonally dry tropics	275-365	>20
- sub-humid	180-275	>20
- semi-arid	75-118	>20
- a rid	<75	>20
Cool tropics		5-20

LGP = Length of he growing period

DMT = Daily mean temperature


Principal Ecoregions of Drylands

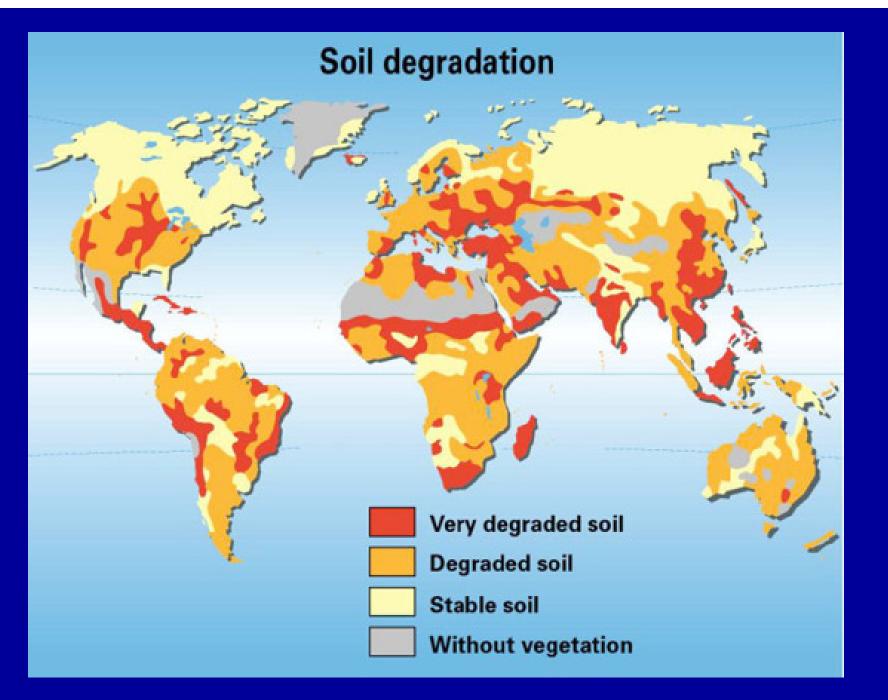
Ecoregion	AI	Area (Bha)	% of earth's area
Sub-humid	0.50-0.65	1.29	9.9
Semi-arid	0.20-0.50	2.31	17.7
Arid	0.05-0.20	1.57	12.0
Hyper-arid	<0.05	0.98	7.5
Total		6.15	47.1

AI : Aridity Index

Global Distribution of World's Drylands

Region	Area (Bha)	% of earth's area
Africa	1.96	15.0
Asia	1.95	14.9
Australia	0.66	5.1
Europe	0.30	2.3
N. America	0.74	5.6
S. America	0.54	4.2
Total	6.15	47.1
U.S.	0.37	2.8

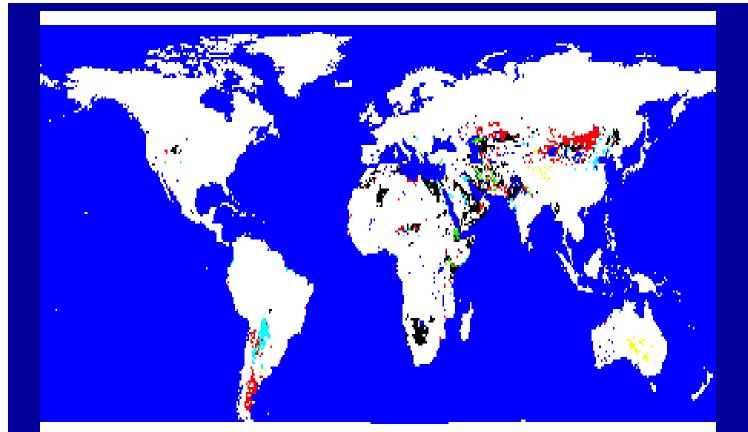
Land Use in Drylands

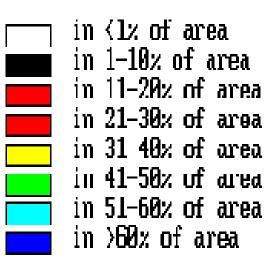

Land use	World	U.S.
	M	ha
Irrigated	145.5	15.2
Rainfed	457.7	30.1
Rangeland	4556.4	325.1
Hyper-arid	916.1	1.3
Total	6075.7	371.7

Dregne and Chou (1992)

Soil Degradation in Third World Countries

Region	Land area (10 ⁶ ha)
Africa	494
Asia	747
C. America and Mexico	63
S. America	234
Total	1538
World	1964


Oldeman, 1994



Global Distribution of Salt-Affected Soils (10⁶ ha)

Region	Saline	Alkali	Total
Africa	53.5	26.9	80.4
Americas	77.6	69.2	146.8
Asia	194.9	121.9	316.8
Australia	17.4	340.0	357.4
Total	343.3	558.1	901.4

Szabolcs, 1979; Gupta and Abrol, 1990

Saline Soils of the World

Forest Cleared Between 1960-1990

Region	%
Asia	30
Africa	18
Latin America	18
World	20

Total area of TRF lost from 1980-2000 = 250 Mha or 12-15 Mha/yr

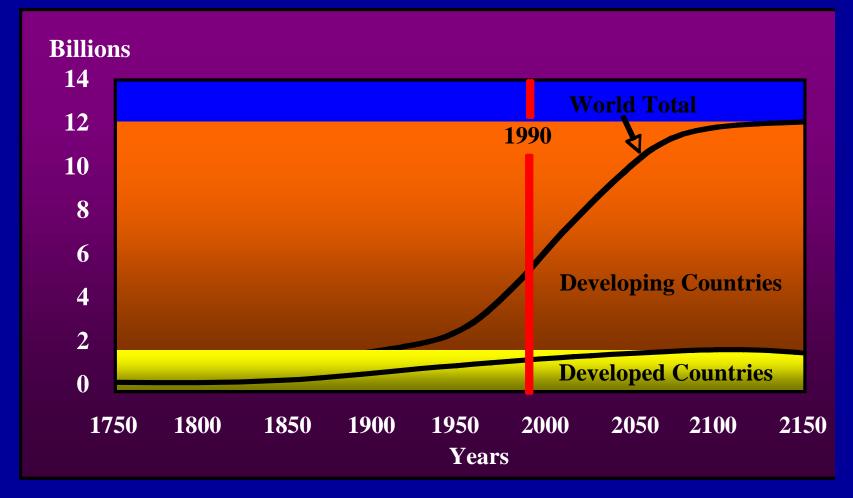
Biomass Burning in the Tropics

	C released		
Region	Biomass burning	Deforestation	
	Tg C	/yr	
Tropical America	780	665	
Africa	1450	373	
Asia	980	621	
Oceania	200		
Total	3410	1659	

Average Annual Rate of Tropical Deforestation and Afforestation

Region	1981 -	1990	1991 ·	- 2000
	Deforestation Afforestation		Deforestation Afforestation	
		10 ³		
Africa	-4,101	130	-5,524	250
Latin America	-7,407	373	-4,546	215
Asia	-3,922	22,104	-5,770	33,225
Total	-15, 430	2,607	-15,840	3,690

(Houghton 2003)



Deforestación

Sistemas agropastoriles

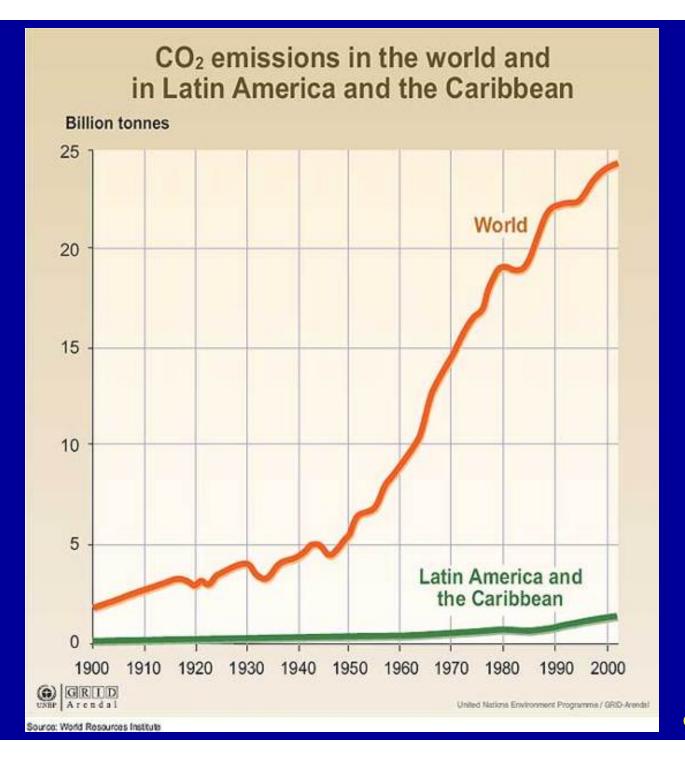
World Population Projections 1750 – 2150

Source: J. Bongaarts, The Population Council, 1994.

Food Gap by Region

Region	Food Gap	
	2000	2010
	10 ⁶ Mg yr ⁻¹	
Sub-Saharan Africa	10.7	17.5
Latin America	0.6	1.0
Asia	1.7	3.6
Others	<u>0.2</u>	<u>0.2</u>
Total (67 Countries)	13.2	22.3

(Shapouri, 2005)


Latin America

Population: 7% of the 2004 world population of 6.3 B. Total Area: 15.3% of the world's total area of 13.4 Bha. Arable Land: 9.7% of the world's cropland of 1.4 Bha. CO₂ emission in 2001: 4% of the world's emission 6.5 Pg. World's TRF: 59% of world's TRF of 1.28 Bha.

CO₂-C Emissions in Latin America and the World

Year	CO ₂ - C emissions (Tg C/yr)	
	Latin America	World
1990	192	5887
2001	263	6524
2010	326	7566
2025	504	10,135

(USDOE 2004)

CO₂ Intensity in Latin America

Relation between energy consumption and the gross domestic product metric ton of CO_2/USS million

Year	CO ₂ Intensity
2001	615 Mg
2025	462 Mg

Land Use in South America

Land Use	Area (10 ⁶ Ha)		
	Central America & Caribbean	South America	Total
Total area	271	1787	2058
Land area	255	1753	2008
Arable land	37	96	133
Permanent crops	6	20	26
Forest and woodland	?	?	1282

(FAO 2001)

Estimates of Rates of Deforestation in Some Countries of Latin America

Country	Rate of deforestation (10 ³ ha/yr)	
Bolivia	100 - 625	
Brazil	1120 - 3671	
Costa Rica	45 - 50	
Mexico	3370 - 858	
Venezuela	517 - 599	

(Houghton 2003)

Global Issues of Soil Quality

- 1. Food security,
- 2. Availability of high quality water,
- 3. Air quality, and concentration of GHGs,
- 4. Waste disposal,
- 5. Urbanization and industrialization.

Soil Quality in the Context of 21st Century

It refers to soil's capacity to:

Maximize long-term productivity per unit input of non-renewable resources.

Minimize risks of environmental (water, air) pollution.

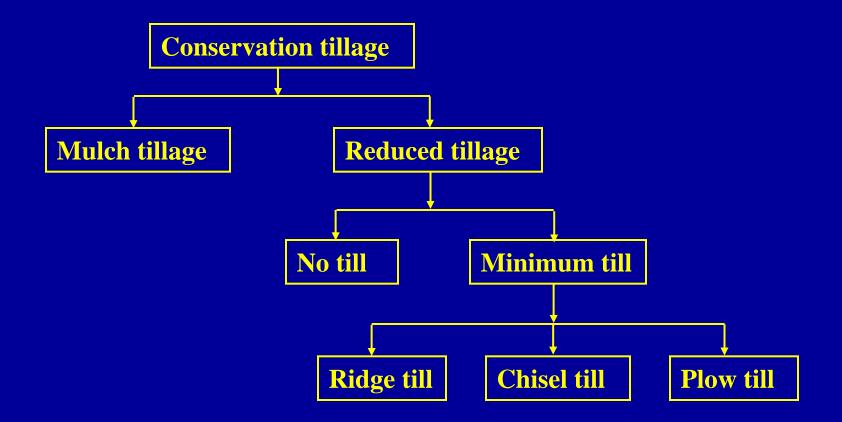
Moderate fluctuations in components of the water and energy budget due to change in land use and land cover, and

<u>Proxy</u> interpretations of past, and predict future global climate changes.

Issues of Soil Quality in Developed and Developing Countries

Developed countries		Developing countries	
1.	Optimizing crop yields per unit input	1.	Maximizing crop yields per unit area, time
2.	Minimizing input of chemicals and energy	2.	Optimizing the use of off-farm input
3.	<u>Maximizing</u> farm profit	3.	Increasing household income
4.	Reducing risks of pollution/ eutrophication of surface and ground waters	4.	Ensuring adequate supply of water for human and animal consumption
5.	<u>Sustaining</u> productivity on a long- term basis	5.	<u>Providing</u> food for the family before the next harvest
6.	<u>Addressing</u> issues of regional, national and global importance (e.g., global climate change)	6.	<u>Addressing</u> concerns of the family

The Challenge of Soil Restoration in the Tropics


- Mulch farming
- No-till agriculture
- Agroforestry
- Integrated nutrient management

Mulch Farming

It is the strategy to ensure high soil productivity, reduce erosion and sedimentation, improve water quality, enhance SOC content, and sequester C to mitigate the greenhouse effect. Mulch farming is the "life blood" of soils.

Types of Conservation Tillage Systems

Factors Affecting Choice of Tillage Systems

Climate Soil Terrain Cropping systems Social, economic & cultural factors

Benefits of Conservation Tillage Systems in the Tropics

- Erosion control
- Water conservation
- Reducing maximum soil temperature
- Improving soil structure
- Decreasing fuel
- Increasing profit
- Improving SOC content and C sequestration

Soil and Ecological Conditions Favorable for No-Till Farming

Factor

Favorable conditions

- Terrain
- Soil drainage
- Texture
- Soil structure
- Soil biodiversity
- Rainfall regime
- Crop residue
- **Perennial weeds**

Flat to undulating, less than 20% Good internal drainage Light to medium texture Structurally active soils High biodiversity Sub-humid to humid climate Availablity at 4 Mg/ha Minimal

Degraded antecedent soil physical conditions

- Crusted
- Compacted
- Uneven micro-relief
- Biologically inert soil

Sellamiento

Suelo endurecido

Inherent soil properties

- Structurally inert soils with LACs
- Heavy texture
- Slow/impeded internal drainage

Lack of crop residue mulch due to:

- Biomass burning
- Uncontrolled/excessive grazing
- Residue removal for other purposes

Incidence of Pests

- Perennial weeds
- Rhizomatous weeds
- Lack of effective and economic herbicides
- Crop damage by insects, rodents, pathogens

Lack of appropriate seeding equipment

Alternative Conservation Tillage Systems

- Tied ridges
- Broadbeds
- Paraplow
- Application of biosolids
- Soil amendments
- Cover crops
- Agroforestry

Cropland Under No-Till in Key Countries 2003/2004

Country (Area million hectares)	Country	Area (million hectares)	
United States	23.7	South Africa	0.3	
Brazil	21.9	Spain Venezuela	0.3 0.3	
Argentina	16.0	Uruguay	0.3	
Canada	13.4	France	0.2	
Australia Paraguay	9.0 1.5	Chile Others	0.1 1.2	
Pakistan/Northern Ind		Total	90.1	
Bolivia	0.4			

(From Brown, 2005)

C-MASC 9/06

Expanding Conservation Tillage in the Tropics

 There is a strong need to adopt conservation tillage throughout the tropics.

• It is a "quiet revolution".

Conservation Tillage in Marginal Soils of Harsh Tropical Climates

In areas of fragile soils and harsh climate, the benefits among tillage systems are to be sought in <u>long-term sustainability</u> of soil and water resources rather than in short-term yields.

- Erosion control
- Water conservation
- C sequestration

Desarrollo de raíces en pastos

Maíz labranza cero T8 (Maíz – Soya A.V.)

Maíz cincel T10 (*P. maximum*) C-MASC 9/06

Scope for Conservation Tillage in the Tropics

Soils and enviornment situations in the tropics necessitate researchers to look for ways to introduce conservation tillage in "feasible ecosystems." Such feasible ecosystems must be well-defined in terms of:

- Soils, climate, drainage, irrigation
- Economic and social factors, and
- Institutional support

Restoring SOC Pool by 1 Mg C ha⁻¹ yr⁻¹ and Food Production in LDCs

Crop	Area (10⁶ ha)	Production Increase (10 ⁶ Mg yr ⁻¹)	
Cereals	430	21.8 - 26.3	
Legumes	68	2.0 - 3.2	
Tubers	<u>34</u>	<u>6.6 - 11.3</u>	
Total	532	30.4 - 50.8	

Observed Rates of C Sequestration in the Tropics

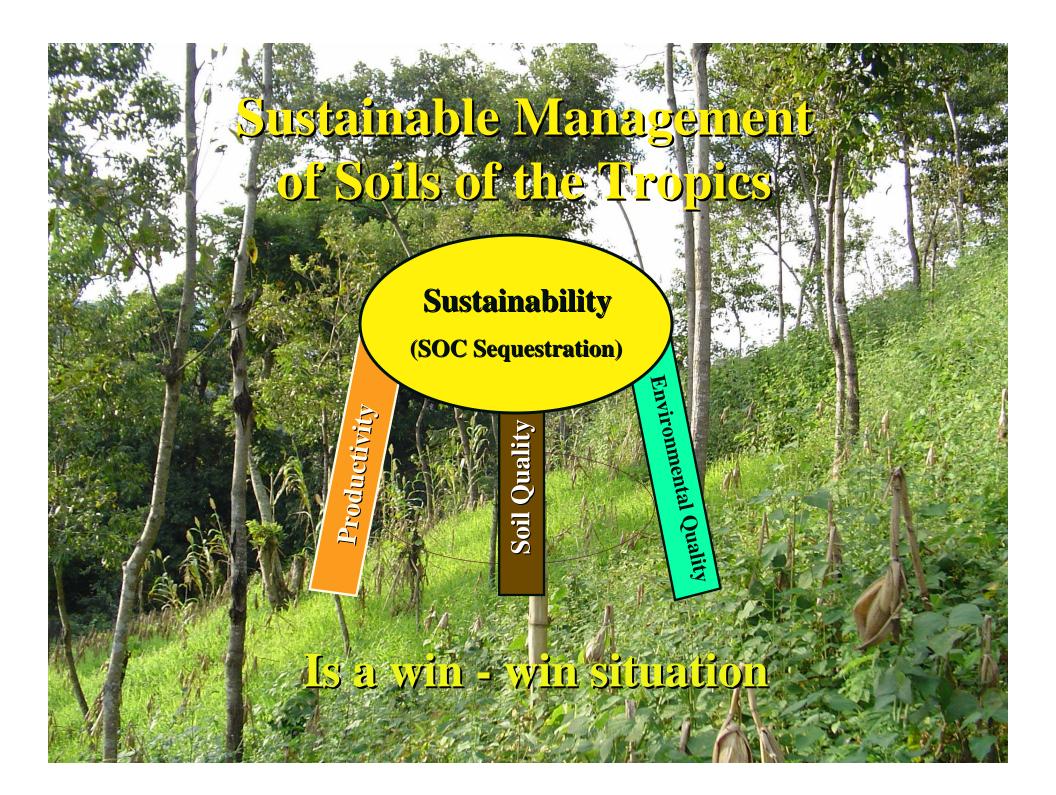
Strategy	SOC	SIC	
	kg C/ha/yr		
Conservation tillage systems	100-200	50-100	
Restoration of degraded soils	50-250	50-100	
Improving grazing lands	100-200	50-100	

Potential of Soil C Sequestration

Region	Potential (Pg C yr ⁻¹)		
World	0.6 - 1.2		
Brazil	0.04 - 0.06		
Tropics	0.29 - 0.54		

Estimates of Carbon Sequestration and Carbon Sequestration Potential in Developing Countries Over 2003 - 2012

Region	Forest restoration	Sustainable agriculture	Avoided deforestation	Total C from all activities	Total net present value of all activities
			10 ⁶ Mg C		
Latin America	177.9	93.1	1097.3	1368.3	10,237.8
Africa	41.7	69.7	167.8	279.2	2,048.9
Asia	<u>96.2</u>	<u>227.3</u>	<u>300.5</u>	<u>624.0</u>	<u>4,528.5</u>
Total	315.8	390.1	1565.6	2271.5	16,815.2


(Modified from Niles et al., 2002)

C-MASC 9/06

Soil Carbon is Also a Farm Product

- The Chicago Climate Exchange started trading C on 1 November 2003.
- The opening price was low at \$1/ton of CO₂ equivalent (\$3.67/ton of C).
- The present price is about \$1.90/ton of CO₂ equivalent (\$7.00/ton of C).
- The price in the E.U. countries is \$20/ton pf CO₂ equivalent (\$73.30/ton of C).

The difference in price between the U.S. and European market is due to the mandatory cap imposed by E.U. countries on industrial emissions of CO₂.

