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ABSTRACT

Food production in developing countries, estimated at 1223 million metric tons (Mg), must be increased by 778 million Mg or
2�5 per cent y�1 between 2000 and 2025 to meet the needs of an increased population and projected change in diet. Among
numerous options, the one based on enhancing soil quality and agronomic productivity per unit area through improvement
in soil organic carbon pool has numerous ancillary benefits. The available data show that crop yields can be increased by
20–70 kg ha�1 for wheat, 10–50 kg ha�1 for rice, and 30–300 kg ha�1 for maize with every 1Mg ha�1 increase in soil organic
carbon pool in the root zone. Adoption of recommended management practices on agricultural lands and degraded soils would
enhance soil quality including the available water holding capacity, cation exchange capacity, soil aggregation, and
susceptibility to crusting and erosion. Increase in soil organic carbon pool by 1Mg ha�1 y�1 can increase food grain production
by 32 million Mg y�1 in developing countries. While advancing food security, this strategy would also off-set fossil
fuel emissions at the rate of 0�5 PgC y�1 through carbons sequestration in agricultural soils of developing countries.
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INTRODUCTION

World hunger is an overarching issue and will remain a major concern during most of the 21st century. Global hot

spots of hunger include sub-Saharan Africa (SSA) and South Asia (Rhodes, 1995; Somerville and Briscoe, 2001;

Sanchez, 2002; Rosegrant and Cline, 2003; Conway and Toenniessen, 2003). Wild (2003) estimated that the

annual food production of 1223 million Mg (1Mg¼ 10 g6¼ 1000Kg¼ 1 metric ton) in developing countries must

be increased at the rate of 2�5 per cent y�1 by an additional 778 million Mg to meet the food demands and projected

change in diet. This increase will have to come from increases in productivity of the existing land through

restoration of degraded soils and improvement in soil quality. On the contrary, the rate of increase in crop yields is

projected to decrease, especially in developing countries where natural resources are already under great stress,

because of soil degradation that may be exacerbated by the projected climate change, (Broad and Agrawala, 2000;

Kaiser, 2000) and which may reduce yield of rice in Asia because of higher night temperatures from global

warming (Peng et al., 2004). The projected global warming may also limit the agricultural yield in the USA

(Lobell and Asner, 2003), which can adversely affect emergency grain supplies to regions with food deficit. Yet,

high and sustainable yield increase will have to be achieved (Fischer et al., 2000), just to maintain a status quo in
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per capita food availability (Wild, 2003). Decline in agronomic productivity of soils in developing countries is

partly attributed to human-induced soil degradation and the attendant decline in soil quality (Lal, 2004). There is a

strong link between soil quality and agronomic productivity on the one hand, and soil organic carbon (SOC) and

soil quality on the other. Extractive practices widely used by resource-poor farmers in developing countries deplete

the SOC pool, degrade soil quality and adversely affect agronomic productivity. Thus, agricultural sustainability is

contingent upon land use and management systems that enhance and maintain high levels of SOC pool. This

manuscript collates and synthesizes existing information linking the SOC pool and the agronomic yields of

important food crops in developing countries. The focus is on soils of the tropics and subtropics, where the SOC

pool has been the most severely depleted. In these areas, crop yields are low, and productivity must be increased to

meet the food demands of the growing population. The hypothesis is that improvement in soil quality through

increase in the SOC pool can achieve the desired rate of increase in crop yield to ensure food security by 2025.

SOIL ORGANIC CARBON POOL AND SOIL QUALITY

Soil carbon (C) pool, estimated at 2500 Pg (Pg¼ petagram¼ 1� 1015 g¼ 1 billion tons) to 1m depth comprising

both soil organic carbon (SOC) and soil inorganic carbon (SIC) (Batjes, 1996; Eswaran et al., 2000), is an

important component of the global C cycle. World soils have lost 55 to 90 Pg of C because of conversion from

natural to agricultural ecosystems, tillage, and soil degradation caused by erosion and other processes (IPCC,

2001; Lal, 2004). Some estimates of SOC loss since the advent of agriculture 10 000 years ago vary from 55 Pg

(IPCC, 2001), via 243 Pg (Rozanov et al., 1990) to 320 Pg (Ruddiman, 2003). In addition to degrading quality of

soil and water resources, most SOC lost from agricultural soils and degraded ecosystems is emitted into the

atmosphere as CO2 or CH4. Thus, restoration of degraded soils and ecosystems and adoption of recommended

management practices (RMPs) is considered a viable option to reducing the rate of enrichment of atmospheric CO2

by 0�4 to 1�2 PgC y�1 (5 to 15 per cent of the fossil fuel emissions in 2000) for the next 20 to 50 years (Lal, 2004).

While reducing the risk of climate change by enrichment of atmospheric CO2 concentration, the SOC

sequestration has numerous ancillary benefits, which must also be objectively addressed while implementing

any regional or global policies towards sustainable management of soil resources. Important among these is the

strong positive effect of SOC pool on soil quality, agronomic/biomass productivity, and advancing global food

security.

The SOC pool comprises two predominant components: (1) the inert or recalcitrant component, which is not

involved in the mineralization process and depends on the soil type, climate, land-use history and the landscape

position; and (2) the labile or the active fraction, which depends on the management. The change in the SOC pool

because of changes in land use and management is mostly because of changes in the labile fraction. There also

exists a strong link between the concentration of the labile fraction of the SOC and soil quality, especially so in

impoverished soils of the tropics and subtropics, which have lost 60 to 80 per cent of their SOC pool due to

extractive practices of subsistence farming. Some cultivated soils in Kenya have lost their SOC stock by 50 to

75MgCha�1 within 30 years of cultivation (Moshi et al., 1974; Van Wissen, 1974; Tiffen et al., 1994; Cole et al.,

1993; Swift et al., 1994). In Senegal, Siband (1974) reported that SOC concentration of the surface 0–10 cm layer

decreased from 28 g kg�1 to 10 g kg�1 following 90 years of cultivation, with severe adverse effects on soil quality

and ability to resist drought.

Increasing the SOC pool of degraded soils would increase crop yields by influencing three mechanisms:

(1) increasing available water capacity; (2) improving supply of nutrients; and (3) enhancing soil structure and

other physical properties (Figure 1). There exists a strong relationship between the SOC pool and the plant

available water capacity (AWC) and the ability of soils to withstand drought (Hudson, 1994; Emerson, 1995;

Gupta and Larson, 1979; Hollis et al., 1977; Salter and Williams, 1969; Salter and Haworth, 1961). In general, the

soil available moisture content increases by 1 to 10 g for every 1 g increase in soil organic matter (SOM) content

(Emerson, 1995). The increase may be small, but it may suffice to help maintain crop growth between periods of

rainfall of 5 to 10 days. For some soils, however, several researchers have also reported either no or slight effect of

SOC on AWC (Bauer and Black, 1992; Haynes and Naidu, 1998; Thomasson and Carter, 1989).
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Reversing degradation and desertification through enhancement and preservation of SOC would enhance cation

exchange capacity (CEC), improve biotic activity of micro-organisms and improve the supply of nutrients. Soil

biota are ecosystem engineers, and their importance to ecosystem restoration cannot be overemphasized (Lavelle

et al., 1997). The SOC pool is the driving force for biological activity, and it is the primary source of energy and

nutrients for soil biota (Powlson et al., 2001). Soils with improved quality respond more to fertilizers and other

input than those depleted of their SOC pool. Increase in the SOC pool also increases CEC (Johnston, 1986).

Decline in 1 g kg�1 of SOC decreased effective CEC by 4�3mmol kg�1 in soils of low activity clays (e.g., the West

African Sahel) reducing the ability of the soil to retain nutrients (DeRidder and VanKeulen, 1990; Bationo and

Mokwunye, 1991). There exists a significant positive correlation of the SOC pool with exchangeable bases and

extractable K in red Ferrosols of Tasmania, Australia (Cotching et al., 2002). Therefore, an increase in SOC

concentration would produce the same level of crop yield with a reduced level of fertilizers (Vallis et al., 1996;

Aggarwal et al., 1997) because of an increase in fertilizer-use efficiency and a decrease in nitrate leaching (Vallis et al.,

1996). Increases in the SOC pool also enhance soil structure and aggregation (Tisdall and Oates, 1982; Stengel et al.,

1984; Haynes and Swift, 1990; Feller and Beare, 1997; Haynes and Naidu, 1998; Gardner et al., 1992; Hamblin and

Davies, 1997; Karlen et al., 1994), making soils less prone to crusting and compaction (Diaz-Zorita and Grosso, 2000)

and soil erosion (Schertz et al., 1994; Benito and Diaz-Fierros, 1992).

Experiments in Canada showed that a decrease in SOC by 1Mg ha�1 in the 0 to 7�5 cm layer decreased wheat

yield by 39 kg ha�1 in Lethbridge and 19 kg ha�1 at Hill Spring location (Larney et al., 2000). In comparison,

wheat grain yield declined by 26�5 kg ha�1 for each 1Mg ha�1 loss in the SOC pool at 0–50 cm depth in North

Figure 1. Improvement in soil quality by increasing the soil organic carbon content.
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Dakota, USA (Bauer and Black, 1994). Experiments in Russia showed that an increase in the humus content of soil

by 1 per cent resulted in a corresponding increase in yield of cereal by 1Mg ha�1 (Ganzhara, 1998), which is

equivalent to 42 kg ha�1 y�1 of SOC for a plow depth of 20 cm and a mean soil bulk density of 1�2Mgm�3. At

Rothamsted, UK, Johnston (1991) reported that the yield of wheat and other crops increased with an increase in

humus content from 0�7 to 0�9 per cent. For a Podzolic loamy-sand soil in Russia, Zhukov et al. (1993) reported

that the yields of wheat and barley (Hordeum vulgare) increased with an increase in soil humus content. The yield

of wheat (Mg ha�1) and the corresponding humus content (%), respectively, were 3�86 and 0�7, 3�92 and 1�5, 4�20
and 2�4 and 4�15 and 3�0. Thus, the rate of increase in yield was 13 kg ha�1 for every 1Mg increase in the SOC pool

at 0–20 cm depth.

SOIL ORGANIC CARBON AND CROP YIELDS

Productivity gains with an increase in the SOC pool are large, especially when combined with judicious input of

fertilizers, irrigation and other amendments. Increases in SOC concentration enhance crop productivity in soils

with a clay content lower than 20 per cent, and in soils of sandy-loam and loamy-sand texture. In most soils, the

relation between SOC content and crop yield is linear up to a limit (2�0 per cent of SOC) beyond which it levels off
(Janzen et al., 1992; Olson and Janzen, 1992). In some soils, an increase in crop yield due to an increase in the SOC

pool is primarily related to an increase in the labile fraction, which may have a narrow ecological optimum, 0�2 to
0�6 per cent for central Germany (Körschens, 1997). The critical limit of total SOC content, below which crop

yield declines by about 20 per cent is 1�1 per cent for most soils of the tropics (Aune and Lal, 1997), and

2�0 per cent for soils of the temperate regions (Kemper and Koch, 1966; Greenland et al., 1975; Loveland

and Webb, 2003). In unfertilized soils, in which breakdown of soil organic matter is necessary to supply nutrients

and maintain yields, there may be a critical level of SOC below which insufficient nutrients are mineralized to

sustain satisfactory yields (Grace et al., 1995).

Latin America

Numerous experiments conducted in Latin America have documented that enhancing and maintaining a high level

of SOC pool is important to sustaining productivity of soils. In Argentina Pampas, Diaz-Zorita et al. (1999)

observed that wheat (Triticum aestivum) yields were linearly related to a SOC concentration lower than

17�5 g kg�1. Losses of 1Mg of SOM decreased wheat yield by about 40 kg ha�1. Therefore, use of no-till soil

management and incorporation of pastures in the rotation cycle are recommended for sustainable use of the soils of

the Pampas (Diaz-Zorita et al., 2002).

There are several land-use and management practices that can enhance the SOC pool in soils of Latin America.

Growing deep-rooted grasses with a high Net Primary Productivity (NPP) (Fisher et al., 1994), improved pastures

(Neill et al., 1997), conversion from plow-till to conservation tillage (Bayer et al., 2000, 2001; Sa et al., 2001), and

afforestation with fast-growing tree species (Zinn et al., 2002; Smith et al., 2002), all enhance SOC concentrations

in the soils of Latin America. Beneficial effects of conversion from plow-till to conservation-till have been widely

documented in the Pampas (Buschiazzo et al., 1998; Alvarez and Lavado, 1998; Diaz-Zorita and Grosso, 2000).

South Asia

Several experiments have demonstrated the positive impact of residue retention on SOC concentration and

increase in crop yield in South Asia. In Rajsthan, India, Aggarwal et al. (1997) reported that retention of crop

residues and manure increased soil moisture content, enhanced SOC concentration and improved the yield of pearl

millet (Pennisetum typhoides) by 0�1 to 0�2Mg ha�1. Also in India, a strong increase in crop yield with increase in

SOC concentration was reported for mustard (Brassica juncea) by Shankar et al. (2002); and wheat, mustard,

sunflower (Helianthus annuus) and groundnut (Arachis hypogaea) by Ghosh et al. (2003). Seed grain yield of

mustard increased at the rate of 360 kg ha�1 for each 1Mg increase in the SOC pool in the surface 15 cm layer

within the SOC range of 6 to 12MgCha�1 (Shankar et al., 2002). Decreases in SOC pools in agricultural soils is

reportedly more in unfertilized compared to fertilized soils, and there is a gradual build up in the SOC pool in those
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soils receiving recommended rates of fertilizers (Ghosh et al., 2003), especially when combined with manure

application (Yadav et al., 2000; Reddy et al. 2000; Kanchikerimath and Singh, 2001). For Vertisols in central

India, integrated soil management (e.g., conservation tillage for erosion control, water harvesting, soil-fertility

management, and legume-based rotations), increased grain yield from 1Mg ha�1 y�1 under traditional systems to

4�7Mg ha�1 with an attendant increase in the SOC pool and improvement in soil quality (Wani et al., 2003). The

rate of growth in productivity between 1977 and 2002 was 77 kg ha�1 y�1 under the improved system vis-à-vis

26 kg ha�1 y�1 under the traditional systems. The long-term sustainability of rice (Oryza sativa)-wheat systems of

South Asia, the basis of the Green Revolution of the 1970s, which averted mass starvation in the region, depends

on the SOC pool of these intensively managed soils. Grace et al. (2003) observed that a decline in yield of the rice–

wheat system was also associated with an attendant decline in the SOC pool at the rate of 200 to 624 kg ha�1 y� 1.

Experiments on maize in Thailand showed that grain yield increased by 2�9Mg ha�1 for each 1 per cent increase in

SOM content (Petchawee and Chaitep, 1995). Sustainable use of structurally weak Vertisols in Australia

also strongly depends on the SOC pool (Dalal et al., 1995; Cotching et al., 2002). In Tasmania, Australia,

Cotching et al. (2002) reported a significant correlation between the SOC pool and yields of spring vegetables.

Africa

Experiments conducted in tropical Africa have also produced encouraging results with regards to the positive

impact of SOC on crop yields and agronomic productivity. In Niger, Bationo and Ntare (2000) observed that

legume–millet rotation with 30 kgN ha�1 maintained a high level in the SOC pool and sustained crop yields.

Across several sites in West Africa, Becker and Johnson (2001) observed that a reduction in yield of upland rice on

continuously cultivated soils was also associated with a decline in the SOC concentration. Decline in rice yield

(Mg ha�1) in relation to reduction in SOC concentration (%), respectively, was 0�19 and 0�47 in the Guinea

Savanna zone, 0�33 and 0�21 in the derived savanna zone, 0�53 and 0�11 in the bimodal forest zone, and 0�40 and

0�26 for the monomodal forest zone. Decline in the SOC concentration by 19 per cent across sites resulted in a

26 per cent yield decline (Becker and Johnson, 2001). In the West African Sahel, Yamoah et al. (2002) reported

that a combination of crop residues and fertilizer produced the highest millet grain and straw yields, water and

fertilizer use efficiencies, and SOC concentration. Similar observations for the Sahel were made by Subbarao et al.

(2000), Andreas et al. (2000), and Rebafka et al. (1994). A long-term experiment conducted on a Kikuyu red clay

in Kenya showed that total crop yield of maize and beans (Phaseolus vulgare) ranged from 1�4Mg ha�1 y�1 when

residue was removed and without external input to 6�0Mg ha�1 y�1 when straw was retained and fertilizers and

manure (120 kgN, 52 kg P and 10Mg ha�1 manure y�1) were applied. The SOC pool to 15 cm depth ranged

between 23�6Mg ha�1 for straw removal to 28�7Mg ha�1 with manuring and residue retention. Every Mg of

C ha�1 conserved in soil through adoption of RMPs increased grain yield by 243 kg ha�1 for maize and 50 kg ha�1

for beans (Kapkiyai et al., 1999). In Western Nigeria, Lal (1981) observed that grain yield increased linearly with

increase in the SOC content at the rate of 2�9Mg ha�1 for maize and 0�23Mg ha�1 for cowpea (Vigna unguiculata)

for each 1 per cent increase in SOC concentration in the 0–10 cm layer. In the West African humid forest and

savanna zones, Larbi et al. (2002) observed that average grain yield increased positively with the increasing

amount of crop residues applied as mulch due to the corresponding increase in SOC, total N and available P

concentrations. Several experiments throughout tropical Africa, North Africa and West Africa have shown that

SOC concentration can be increased by conversion from plow-till to conservation-till (Lal, 1976; Mrabet, 2002;

Jenkinson et al., 1999), manuring and soil fertility management (Pieri, 1992; Vlek, 1993), afforestation and

agroforestry measures (Breman and Kessler, 1997; Guillaume et al., 1999), and crop residue retention as mulch

(Lal, 1998; Adeoye, 1990; Mbagwu, 1991).

POTENTIAL OF INCREASING CROP YIELDS THROUGH ENHANCING

THE SOIL ORGANIC CARBON POOL

The increase in crop yield with increase in SOC can be substantial especially in impoverished soils that are

severely depleted of their SOC pool. On the contrary, decline in the SOC concentration is not always associated
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with a decrease in crop yields (Beyer et al., 1999). In some cases, crop yield may increase despite a notable decline

in SOC concentration (Hairiah et al., 2000), because of other managerial inputs whose efficiency may increase in

soils with low SOC, N and other nutrients (Ganzhara, 1998). In others, an increase in SOC may not increase the

crop yield as has been reported for the rice–wheat system of South Asia (Duxbury, 2001).

Increases in crop yield with increase in the SOC concentration in the root zone through adoption of RMPs in

developing countries is impressive (Table I). There are three possible scenarios relating crop yield or agronomic

productivity to SOC pool: (1) increase in crop yield with increase in the SOC pool; (2) no or little decrease in crop

yield with reduction in the SOC pool, and (3) increase in crop yield with decrease in the SOC pool. These

apparently conflicting responses depend on soil texture (clay content), antecedent SOC pool, severity of

degradation, land use, and management with regards to the use of fertilizer and irrigation. Empirical data relating

crop yields to the SOC pool are scanty, especially for depleted and degraded soils of the developing countries.

Meager data, summarized in Table I, show that every 1Mg ha�1 increase in the SOC pool can increase crop

yield by 20–70 kg ha�1 for wheat, 10–50 kg ha�1 for rice, 30–300 kg ha�1 for maize, 20–30 kg ha�1 for cowpea,

and 40–60 kg ha�1 for beans. There exists a strong need to improve the data base for principal crops and

predominant soil types through well designed and properly implemented long-term experiments.

Scaling up from the plot scale data to regional/global scale over a 25-year period requires an understanding of

the functional relationship between the SOC pool and crop yield at a given point in time, and of the temporal

changes in such relationships over the 25-year period. Experimental data describing such functional relationships

are not available, especially for degraded soils of the tropics and subtropics. The relationship between SOC

concentration and crop yield, in addition to being soil and crop specific, may be sigmoidal, linear or exponential.

The extrapolation of the plot data in Table I to the global scale presented in Table II is based on several

assumptions: (1) yields of all crops increase linearly with increase in SOC concentration over the 2-year period; (2)

adoption of RMPs may enhance the SOC pool either by 0�5Mg ha�1 y�1 or by 1Mg ha�1 y�1, corresponding to an

increase in SOC concentration at 20 cm depth by 0�02 per cent y�1 and 0�04 per cent y�1, respectively; (3) the rate

of increase in the SOC pool can be sustained for 50 years with a cumulative increase in SOC concentration by

1 per cent or 2 per cent in 50 years; and (4) such an increase would be independent of any increase in crop yield by

other managerial input.

The global increase in crop yields are computed assuming that every 1Mg ha�1 increase in the SOC pool would

increase crop yield by 20–70 kg ha�1 y�1 in wheat, 30–300 kg ha�1 y�1 in maize, 10–50 kg ha�1 y�1 in rice,

50–60 kg ha�1 y�1 in millet, 20–30 kg ha�1 y�1 in soybean, 20–25 kg ha�1 y�1 in beans and 5–10 kg ha�1 y�1

in cowpeas (Table II). Restoration of the SOC pool may lead to a total increase in food-grain production in

the tropics and sub-tropics by (16� 6)� 106Mg y�1 for a 0�5MgCha�1 increase in the SOC pool and

(32� 11)� 106Mg y�1 for a 1MgC ha�1 increase in the SOC pool (Table II). Increases in food-grain production

attributed to increases in the SOC pool can be (2�3� 0�8)� 106Mg y�1 in Africa, (4�2� 1�2)� 106Mg y�1 in

Table I. Soil organic carbon impacts on crop yields in the tropics and subtropics

Country Crop Soil/region Yield increase Reference
(Kg ha�1 y�1 Mg� 1 of SOC)

Kenya Maize Kikuyu red clay 243 Kapkiyai et al. (1999)
Kenya Beans Kikuyu red clay 50 Kapkiyai et al. (1999)
Nigeria Maize Egbeda/Alfisol 254 Lal (1976)
Nigeria Cowpea Egbeda/Alfisol 20 Lal (1976)
Argentina Wheat Haplundolls/Haplustoll 64 Diaz-Zorita et al. (1999)
Thailand Maize Northeastern 408 Petchawee and Chaitep (1995)
India Mustard Inceptisol/UP 360 Shankar et al. (2002)
India Maize Inceptisol/Haryana 210 Kanchikerimath and Singh (2001)
India Wheat Inceptisol/Haryana 38 Kanchikerimath and Singh (2001)
Sri Lanka Rubber Alfisol/Ultisol 66 Samarppuli et al. (1999)
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Latin America, and (9�3� 3�5)� 106Mg y�1 in Asia for a 0�5MgC ha�1 y�1 increase in the SOC pool. The

corresponding increase in food production for 1MgC ha�1 y�1 increase in the SOC pool would be

(4�6� 1�6)� 106Mg y�1 in Africa, (8�4� 2�4)� 106Mg y�1 in Latin America and (18�6� 7�1)� 106Mg y�1

for Asia. The actual increase may be soil and region specific and vary with a wide range of socio-economic and

biophysical factors, and may be much greater because of the synergistic effects of the overall improvement in soil

quality.

STRATEGIES FOR ENHANCING THE SOIL CARBON POOL

While the benefits of SOC sequestration in mitigating climate change are important to developed economies (Powell

and Hons, 1991; Powell and Unger, 1998; Rasmussen and Parton, 1994; Wilhelm et al., 2004), improvements in

Table II. Potential of increase in food grains in the tropics and subtropics through improvement in soil quality by adopting
recommended management practices which enhance the SOC pool

Crop Region Area Yield Increase in SOC pool Increase in SOC pool
(kg ha�1) by 0�5MgCha�1 y�1 by 1MgCha�1 y�1

Increase in yield Productivity increase Increase in yield Productivity increase
(kg ha�1 y�1) (106Mgy�1) (kg ha�1 y�1) (106Mgy�1)

Wheat
Africa 8�9 1571 10–20 0�09–0�18 20–40 0�18–0�36
Latin America 9�0 2515 25–35 0�225–0�315 50–70 0�45–0�63
Asia 97�1 2535 15–25 1�455--2�43 30–50 2�91--4�86

1�77–2�925 3�54–5�85
Maize

Africa 26�6 1677 15–25 0�40–0�65 30–50 0�80–1�30
Latin America 22�6 3124 100–150 2�26–3�435 200–300 4�52–6�87
Asia 41�1 3566 50–150 2�05--4�11 100–300 4�11--8�22

4�71–8�195 9�43–16�39
Rice

Africa 7�8 2211 5–20 0�04–0�115 10–30 0�08–0�23
Latin America 6�5 3585 15–25 0�10–0�165 30–50 0�20–0�33
Asia 137�6 3964 15–25 2�06--3�425 30–50 4�13--6�85

2�20–3�72 4�41–7�44
Sorghum

Africa 21�6 862 40–60 0�86–1�295 80–120 1�73–2�59
Latin America 4�1 3163 50–70 0�20–0�285 100–140 0�41–0�57
Asia 12�5 1073 50–70 0�625--0�875 100–140 1�25--1�75

1�69–2�46 3�39–4�91
Millet

Africa 20�1 670 15–25 0�30–5�00 30–50 0�60–1�00
Latin America 0�2 1516 25–35 0�005–0�005 50–70 0�01–0�01
Asia 14�6 820 15–25 0�22--0�365 30–50 0�44--0�73

0�52–0�87 1�05–1�74
Beans (Phaseolus and Vigna spp.)

Africa 3�1 668 20–30 0�06–0�095 40–60 0�12–0�19
Latin America 8�0 743 20–30 0�16–0�24 40–60 0�32–0�48
Asia 14�7 640 15–25 0�22--0�37 30–50 0�44--0�74

0�44–0�70 0�88–1�41
Soybean

Africa 0�92 973 10–15 0�01–0�015 20–30 0�02–0�03
Latin America 24�0 2389 15–25 0�36–0�60 30–50 0�72–1�20
Asia 16�9 1398 10–15 0�17--0�25 20–30 0�34--0�51

0�54–0�87 1�08–1�74
Total 11�89–19�74 — 23�78–39�48

(15�8� 5�6) — (31�6� 11�1)
1 g ha y�1 increase in SOC equals 0�02 per cent increase in SOC pool at 20 cm depth per year in soil with a bulk density of 1�3Mgm�3. The
data on area and crop yield are from FAO (2000).
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agronomic yield and reduction in hunger and poverty are critical to degradation-prone developing countries. It is the

agronomic yield, not SOC sequestration, that is the goal of all farmers, especially resource-poor farmers who consider

SOC as a source of nutrients to be exploited in risk-prone environments. Subsistence farmers in the tropics are not

directly concerned about the depletion of SOC, but rather with the reduction in crop yields caused by SOC-induced

degradation in other soil properties (Sanchez, 2002). Not being a plant nutrient, SOC is not essential to plant growth

per se, and the benefits derived from it are substitutable by external input, albeit to a certain limit. Yet, there is a close

relationship between increases in crop yield and increase in SOC (Reilly and Fuglie, 1998), especially through

increase in root biomass and residues returned to the soil. An important question is whether it is theoretically possible

to reverse downward trends in the SOC pool in agricultural soils of SSA and South Asia by adopting RMPs, thereby

increasing productivity and improving the environment.

Several experiments in the tropics have demonstrated that the SOC pool can be enhanced by a combination of

no-till farming, residue retention, manuring, N fertilization, incorporation of grass and legume in the rotation cycle

and use of agroforestry systems (Dalal et al., 1991, 1995; Yadav, 1996; Pal, 2003; Rautaray et al., 2003). Within a

specific management system (e.g., conservation tillage, mulching, manuring, agroforestry, etc.), the rate of SOC

increase depends on several interacting factors including the quantity and quality of residue retained, soil moisture

and temperature regimes, intensity and frequency of cropping systems, etc. Legume-based crop rotations (e.g.,

soybean–sunflower, cowpea–mustard–sunflower) and the use of compost and manure are preferred as viable

alternatives to the rice–wheat system in South Asia for increased productivity, and improvements in the SOC pool

and soil quality (Moore, 1994; Pal, 2003; Dwivedi et al., 2003). However, the retention of crop residues and use of

compost, animal manure and other biosolids on agricultural soils can happen only if alternative sources for

competing uses of such materials (for fodder, fuel and construction, etc.) are identified and made available. Under

the prevailing socio-economic and policy environments, practices such as no-till, agroforestry, diversified/mixed

farming systems, precision farming and judicious use of these options do not meet the social and economic needs

that determine farmer behavior. Therefore, there is a need for a radical change in mindset at all levels of the

societal hierarchy. There must be a drastic paradigm shift so that soil resources are not taken for granted. It is

important that sustainable management of soil resources (through no-till farming, retention of crop residue as

mulch and use of manure and compost to enhance soil fertility) is an integral component of any government

program related to improving agricultural productivity, achieving food security, enhancing water quality and

mitigating climate change. The time for this important action is now.

There are two principal socio-economic and cultural traditions, throughout the developing world in the tropics

and subtropics, which are the driving forces responsible for depletion of the SOC pool and which lead to

degradation of soil, pollution of water, and emission of GHGs and particulate material in to the air. These are:

(1) the removal of crop residue for use as fodder for cattle; and (2) the use of animal dung as household dung for

cooking. Consequently, soil nutrient balance is negative, the SOC pool is depleted, soils are prone to crusting and

compaction because of a decline in soil structure, and are subject to severe erosion by wind and water due to bare,

unprotected surfaces and high erodibility (Figure 2). These degradative processes reduce agronomic/biomass

productivity, decrease response to inputs such as fertilizers and irrigation, and require additional labor (plowing) to

prepare a desirable seedbed/tilth. In addition to reduced production, there are serious problems of soil degradation,

water pollution, and decline in air quality.

Lack of a suitable fuel for household cooking is another social factor driving the complex process of soil and

environmental degradation. Rather than using it as a soil amendment, animal dung is used as a cooking fuel in

developing countries of Asia and Africa. In addition to being a serious health hazard to young mothers and the

children with them, not returning the dung to the soil disrupts the nutrient cycling, accelerates the depletion of

SOM and plant nutrients, reduces agronomic/biomass productivity and jeopardizes sustainability of the specific

land-use system.

Such extractive systems were sustainable practices for millennia in ancient countries such as India, and were

ecologically compatible as long as the population was low, the land:people ratio was high, and the demands on natural

resources were low. With high demographic pressures, a low land:population ratio and high demands for natural

resources that have been severely stressed, these extractive practices are causing severe environmental degradation.
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The reversal of this degradation process requires a paradigm shift in traditional systems of using natural

resources. Livestock management, an important component of any agrarian society, must be based on viable

forage-based rotations and sound pastoral systems. Cattle cannot be raised on crop residues and uncontrolled

grazing without jeopardizing natural resources, which are already under great stress, and without making common

village land prone to the ‘tragedy of the commons’. The system of removing residues from cropland to feed cattle

must be stopped. Similarly, development/identification of clean sources of household fuel is essential to reducing

risks to the health of women and children, and making it possible to use dung/compost as a soil amendment.

Establishment of biofuel plantations (e.g., Prosopis, (mesquite) Jatropha, Leucaena, etc.) on degraded/waste-

lands, village common land, etc., is an important strategy to restoring degraded soils and ecosystems, improving

the SOC pool, enhancing the environment and improving the standard of living.

Figure 2. Two important social and cultural factors responsible for soil and environmental degradation in developing countries.
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CONCLUSION

Food-grain production in developing countries can be increased by 24–39 (32� 11) million Mg y�1 through

improving soil quality by increasing the SOC pool and reversing degradation processes. This increase is about

2�5 per cent r�1 of the total annual cereal production of 1223 million Mg of grain in developing countries.

However, the synergistic effects of increase in yield due to enhanced fertilizer and water use efficiencies are likely

to be much greater. Mulch farming, retention of crop residues, use of manures and biosolids are essential to

enhancing and maintaining the SOC pool in the soils of the tropics. In addition to advancing food security, an

increase in the SOC pool at 1MgC ha�1 y�1 over 500 million hectares would lead to carbon sequestration of

0�5 PgC y�1 with a strong impact on off-setting fossil fuel emissions. Achieving these goals, however, requires

identifying alternative sources for competing uses of crop residues (for fodder, fuel and construction, etc.). Under

the prevailing socio-economic and policy environments, practices such as no-till farming, agroforestry, diversified/

mixed farming systems, precision farming and judicious use of these options do not meet social and economic

needs that determine farmer behavior. Therefore, there is a need for a radical change in mindset at all levels of the

societal hierarchy. There must be a radical paradigm shift so that soil resources are not taken for granted. The

sustainable management of soil resource—through no-till farming, retention of crop residue as mulch and use of

manure and compost to enhance soil fertility—must be an integral component of any government program related

to improving agricultural productivity, achieving food security, enhancing water quality and mitigating climate

change. The time for this important action is now.
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Siband P. 1974. Evolution des caractéres et de la fertilité d’un sol rouge de Casamance. L’Agronomie Tropicale 29: 1228–1248.
Smith CK, Oliveira FD, Gholz HL, Baima A. 2002. Soil carbon stock after forest conversion to tree plantations in lowland Amazonia. Brazilian
Forest Ecological Management 164: 257–263.

Somerville C, Briscoe J. 2001. Genetic engineering and water. Science 299: 2217.
Stengel P, Douglas JT, Guerif J, Goss MJ, Monnier G, Cannell RQ. 1984. Factors influencing the variation of some properties of soils in relation
to their suitability for direct drilling. Soil and Tillage Research 4: 35–53.

Subbarao GV, Renard C, Payne WA, Bationo A. 2000. Long-term effect of tillage, phosphorus fertilization and crop rotation on pearl millet–
cowpea productivity in the West-African Sahel. Experimental Agriculture 36: 243–264.

Swift MJ, Seward PD, Frost PGH, Qureshi JN, Muchena FN. 1994. Long-term experiments in Africa: developing a database for sustainable land
use under global change. In Long-term Experiments in Agricultural and Ecological Sciences, Leigh RA, Johnson AE (eds). CAB
International: Wallingford; 229–251.

Thomasson AJ, Carter AD. 1992. Current and future user of the UK soil water retention dataset. In ‘‘Indirect Methods for Estimating the
Hydraulic Properties of Unsaturated soils’’ 11–13 October 1992, Riverside, CA. USA.

Tiffen M, Mortimore M, Gichuki F. 1994. More People, Less Erosion: Environmental Recovery in Kenya. Wiley: Chichester.
Tisdall JM, Oates JM. 1982. Organic matter and water stable aggregates in soils. Journal of Soil Science 33: 141–163.
Vallis I, Parton WJ, Keating BA, Wood AW. 1996. Simulation of the effects of trash and N fertilizer management on soil organic matter levels
and yields of sugarcane. Soil & Tillage Research 38: 115–132.

Van Wissen HLM. 1974. The Influence of Cultivation Practices on the Organic Carbon Content of Some Deep Soils in Kisii District. Winand
Training Center, Agricultural University: Wageningen.

Vlek PLG. 1993. Strategies for sustaining agriculture in sub-Saharan Africa: The fertilizer technology issue. In Technologies for Sustaining
Agriculture in the Tropics, Ragland J, Lal R (eds). ASA Publication No. 56. ASA: Madison, WZ; 265–277.

Wani SP, Pathok P, Jagawad LS, Eswaran H, Singh P. 2003. Improved management of Vertisols in the semi-arid tropics for increased
productivity and soil carbon sequestration. Soil Use and Management 19: 217–222.

Wild A. 2003. Soils, Land and Food: Managing the Land During the 21st Century. Cambridge University Press: New York, NY; 246.
Wilhelm WW, Johnson JMF, Hatfield JL, Voorhees WB, Linden DR. 2004. Crop and soil productivity response to corn residue removal: a
literature review. Agronomy Journal 96: 1–17.

Yadav RL. 1996. Soil organic matter and NPK status as influenced by integrated use of green manure, crop residues, cane trash and cereal in
sugarcane-based crop sequences. Bioresource Technology 54: 93–98.

Yadav RL, Dwivedi BS, Prasad K, Tomar OK, Shurpali NJ, Pandey PS. 2000. Yield trends and changes in soil organic-C and available NPK in a
long-term rice–wheat system under integrated use of manures and fertilizers. Field Crop Research 68: 219–246.

Yamoah CF, Bationo A, Shapiro B, Koala S. 2002. Trend and stability analyses of millet yields treated with fertilizer and crop residue in the
Sahel. Field Crops Research 75: 53–62.

Zhukov AI, Sorokina LV, Mosaleva VV. 1993. Humus and grain-crop yield on Sod-Podzolic loamy sand soil. Pochvovedniye 25: 55–61.
Zinn YL, Resck DVS, da Silva JE. 2002. Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of
Brazilian Forestry. Ecology Management 166: 285–294.

ENHANCING CROP YIELDS BY RESTORING SOC POOL 209

Copyright # 2005 John Wiley & Sons, Ltd. LAND DEGRADATION & DEVELOPMENT, 17: 197–209 (2006)


