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We present a model of the quantum control via a laser light of the phonon statistics of an acoustical field and of 

the population inversion of a qubit. The phonon field is created in an acoustical multilayered nanocavity with a single-

mode field being selected and it interacts with the thermal environment as well as with a qubit embedded in the cavity. 

The considered qubit is made of a quantum dot (QD). The confinement of the acoustical fields' quantum statistics is 

possible via driving the QD with an intense laser light, which for a proper detuning from the QD's transition frequency 

and for a well-chosen intensity may lead to sub-Poissonian distributed steady-state phonon fields. Furthermore, we 

show that for higher damping rates phonon assisted QD's population inversion occurs under the action of the created 

phonon fields with quantum statistics. 
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În acest articol este prezentat studiul controlului cuantic al statisticii fononilor a unui câmp acustic şi al inversiei 

de populaţie a unui qubit, folosind lumina unui laser. Câmpul fononic este creat într-o cavitate acustică multistrat, astfel 

fiind selectat un singur mod al câmpului ce interacţionează atât cu o baie termală cât şi cu un qubit încastrat în cavitate. 

Qubitul considerat este format dintr-un punct cuantic. Obţinerea şi controlul statisticii cuantice a câmpului fononic este 

posibilă prin utilizarea unui laser intens, care pentru o frecvenţă corect defazată de cea de tranziţie a punctului cuantic şi 

o intensitate bine aleasă poate duce la obţinerea câmpurilor fononice staţionare cu distribuţii sub-poissoniene. Mai mult, 

pentru rate de amortizare înalte, este obţinută inversia de populaţie a punctului cuantic sub acţiunea câmpurilor 

fononice, inversia fiind mai pronunţată pentru câmpuri cu statistică sub-poissoniană. 
Cuvinte-cheie: statistică cuantică, coerenţă cuantică, laser fononic, inversie de populaţie, puncte cuantice. 

 

INTRODUCTION TO THE MODEL 

 

The generation of coherent phonons 

plays an important role in the quantum 

electrodynamics’ (QEDs) research field, as 

phonon assisted processes reveal new 

quantum proprieties for QED setups, e.g., 

phonon assisted Mollow splitting [1], 

population inversion [2] or quantum statistics 

[3].  

In the meantime, the study of the 

quantum dynamics of the acoustical fields, 

itself, leads to a new domain for QEDs, e.g., 

sub-Poissonian distributed phonon fields 

[4,5], phonon antibunching [6] and squeezing 

[7].  

Remarkable results recently have been 

achieved in this domain for different 

experimental setups acting as an acoustical 

analog of the optical laser [8-10] and, 

furthermore, theoretical studies propose more 

new models [11-15] as well as new 

improvements [15,16]. 

In this paper, we describe a theoretical 

model of the generation of acoustical fields 

having sub-Poissonian distributions of quanta 

and we show that the created phonon fields 

may lead to the qubit's population inversion.  

The qubit is made of a two level QD 

with a transition frequency  between its 

ground state  and its excited state  and 

it is embedded in an acoustical multilayered 

nanocavity [17] with a frequency  and a 

damping rate .  

The single-mode phonon field is 

obtained by driving the QD by an intense 

laser with a frequency  which interacts 

with the qubit in a semi-classical way with the 

Rabi oscillation .  

The QD interaction with the cavity’s 

phonons is given by the coupling constant .  

The system's Hamiltonian consists of 

the free QD's and phonon field's terms and the 

QD-laser and QD-phonon interaction terms, 

given respectively as [18,19]: 
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where the QD’s operators are: , 

,  and 

the phonon creation and annihilation 

operators are and respectively . The 

system’s dynamics are solved by using the 

Lindblad form of the master equation [19]: 

 
where  is the density matrix operator and 

,  are the Liouville super-operators 

describing the damping phenomena, with  

corresponding to the QD’s spontaneous 

emission and dephasing processes and  

describing the phonon damping by a thermal 

reservoir. 

 

MODEL’S SOLUTIONS 

 

The system dynamics, i.e., the 

previously mentioned master equation, are 

solved as follows. As a first step the system’s 

Hamiltonian is transformed to a form which 

would give a solvable master equation. Then, 

the master equation is projected into QD’s 

basis and, after some transformations in the 

phonon basis, leads to a system of infinite 

coupled equation. The transformations on the 

equations are made in order to obtain a 

system of equations that can be truncated. 

Once truncated it can be numerically solved 

and the parameters of interest can be deduced. 

As a first step, we apply an unitary 

transformation to go in a frame rotating at the 

laser’s frequency  and then we use the 

dressed-state transformation defined by 

,  

,  

where and

. After one more unitary 

transformation  corresponding 

to , the system’s 

Hamiltonian may be written as a sum of two 

terms corresponding to their rotation 

frequency, i.e., a slow rotating term and a fast 

rotating one by considering that 

: 

 

 

 

 
where ,  

 

are the new QD’s operators in the dressed-

state basis. Instead of applying a usual secular 

approximation by simply canceling the fast 

rotating terms, we consider their main 

contribution as follows: 

 

 

 
 

with  being a constant term which can be 

dropped as it does not contributes to the 

system’s dynamics. The new obtained 

Hamiltonian, i.e.,  , may 

be resumed to the secular approximation case 

if , which is not always the case. In 

our previous works we have already shown 

that the main contribution of the fast rotating 

terms is essential to describe the quantum 

proprieties of the phonon statistics [20]. A 

final unitary transformation is applied 

according to the slow rotating terms, so that 

the final system’s Hamiltonian is: 
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In order to introduce the final 

Hamiltonian in the master equation, similar 

transformation has to be applied to the 

damping terms. The phonon damping term 

rests unchanged and is given by: 

 

 

where the first term represents the damping 

and the last one the pumping processes of the 

interaction of the cavity’s phonons with a 

thermal bath. The QD’s damping term is 

given in the bare state basis as: 

 

 

where  and  are, respectively, the QD’s 

spontaneous emission and the dephasing 

rates. The dressed-state transformation leads 

to a new expression of  after a secular 

approximation applied on the QD’s counter-

rotative terms: 

 

 

expressed by the QD’s dressed-state decay 

rates:  

,

, 

and . 

After all the terms of the master 

equation are determined, one can solve the 

system dynamics by projecting the equation 

in the QD-phonon system’s basis. The 

projection in the system’s state basis in the 

steady-state regime leads to a set of infinite 

linear coupled equation. Once truncated by 

considering the asymptotic behavior of the 

phonon distribution, the system of equations 

can be numerically solved (the complete 

method is given in [20]). 

 

RESULTS AND DISCUSSIONS 

 

The focus of this study is made on the 

statistics of the created steady-state phonon 

fields in the acoustical nanocavity and, 

furthermore, we investigate how the created 

phonon field influences the quantum dot state 

in the steady-state regime. The entire process 

is controlled by the laser’s parameters and 

different nanocavities with different damping 

rates are used. In order to characterize the 

phonon field, we investigate the behavior of 

the second-order correlation function , 

which equals unity for coherent phonons, 

goes below unity for quantum fields with sub-

Poissonian distribution and goes above unity 

for classical fields with  for 

thermal fields. The QD’s behavior is 

described by the population inversion  term, 

which has negative values when the QD is 

more likely to be in the ground state and 

positive values for the QD more probably to 

be found in the excited state.  

Two different damping regimes are 

observed for the studied model, 

corresponding to high and low damping rates. 

The first case shown in fig. 1(b), 

corresponding to high damping rates of the 

order of , is described, for a well-

chosen detuning, by weak phonon fields with 

a prominent sub-Poissonian distribution. 

Under the phonon field’s action, the QD’s 

population is inverted in the region where the 

field is more intense and reaches the 

maximum level in the region of sub-

Poissonian fields. Thus, the information about 

the QD’s state can be obtained by monitoring 

the phonon fields’ statistics and vice versa.  

In the second case shown in fig. 1(a), 

for low damping rates of the order of 

, the acoustical field’s statistics 

are modified to a less prominent sub-

Poissonian behavior but a higher mean 

phonon number in the cavity. The population 

inversion is always negative, so that this 

regime is of no interest for monitoring the 

QD’s state. However, for the studies of the 

phonon fields’ statistics only, we show that 

quite strong fields with quantum statistics 

may be obtained in an enough realistic case. 
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Fig. 1. The second-order correlation function  (continuous curve), the mean phonon number  (dotted curve) 

and the QD’s population inversion  (dashed curve) as functions of the laser’s detuning .  

(a) For a low damping regime with  and (b) for a high damping regime with . The vertical 

axis are representing, from left to right: ,  and . The other model’s parameters are:  

,  ,  

 

 

As about the control parameters, i.e., the 

drive laser’s parameters, beyond a well-

chosen detuning, a moderate laser’s intensity 

is required, corresponding to  

in our case. For higher intensities, the phonon 

statistics does not manifest quantum 

proprieties and the population inversion’s 

values decrease. 

 

CONCLUSIONS 

 

The proposed model showed that 

phonon fields showing pure quantum features 

as sub-Poissonian distributed quanta might be 

obtained for different damping regimes. First 

regime is related to low damping rates where 

quite intense sub-Poissonian distributed 

phonon fields are obtained. The second 

regime, related to high damping rates, 

corresponds to the case where the QD’s 

population is inverted by the created phonon 

fields. Moreover, we show that for this regime 

the maximum of the population inversion is 

located in the region were the phonons have 

are more prominent sub-Poissonian 

distributions and a more intense field. 
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